Electric double layer capacitors (EDLC), also known as supercapacitors or ultracapacitors, have received much attention recently because of their power delivery performance that perfectly fills the gap between dielectric capacitors and traditional batteries. With the growing development of renewable energy sources as well as hybrid electric vehicles (HEV), where peak power will be needed, these systems are thought to play an important role complementing or replacing batteries in the energy storage field.

The most advanced devices, such as, carbon-based supercapacitors, store the energy through reversible ion adsorption on high specific surface area (SSA) carbons at the carbon/electrolyte interface. This surface storage explains the high power capability of these systems. Moreover, since there are no faradic reactions involved in the charge storage mechanism, EDLCs can sustain hundreds of thousands cycles without any noticeable performance change. However, as a consequence of the reversible electrostatic surface charging, these systems suffer from limited energy density. Today’s EDLC research is largely focused on increasing their energy performance and temperature limit.

We recently published results about the anomalous capacitance increase in carbon with pore size lower than 1 nm. Using carbo-derived carbon (CDC) materials, we demonstrated that, defying conventional wisdom about inaccessibility of small pores to solvated ions, these tailored subnanoporous materials exhibited very high capacitance in an acetonitrile-based organic electrolyte, with a volumetric energy twice as high as compared to standard activated carbons. These results were explained by a desolvation of the electrolyte ions entering subnanometer pores, leading to a sieving effect at pore sizes below the size of the solvated ions.

The aim of this paper is to determine the relationship between the ion size and the pore size when no solvent is present in the system and to answer the basic question: what is the best pore size to achieve the highest capacitance for EDLC? We used an ionic liquid (IL) as electrolyte to study the capacitive behavior of CDCs with controlled and tunable pore size just below and above the ion size. As solvent-free electrolytes, ILs offer the unique advantage of a well identified ion size since no solvation shell can form, which may help in understanding the so-called “sieving effect” that is of great importance for EDLCs as well as for chemical and biomedical fields.

Table 1. CDC Porosity Measurements Using Ar Gas Sorption Technique

<table>
<thead>
<tr>
<th>chlorination temperature (°C)</th>
<th>BET SSA (m²/g)</th>
<th>pore volume (cc/g)</th>
<th>average pore width (nm)</th>
<th>maximum pore width (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>400</td>
<td>1113</td>
<td>0.51</td>
<td>0.65</td>
<td>1.12</td>
</tr>
<tr>
<td>500</td>
<td>1140</td>
<td>0.50</td>
<td>0.68</td>
<td>1.18</td>
</tr>
<tr>
<td>550</td>
<td>1202</td>
<td>0.51</td>
<td>0.72</td>
<td>1.29</td>
</tr>
<tr>
<td>600</td>
<td>1269</td>
<td>0.60</td>
<td>0.74</td>
<td>1.23</td>
</tr>
<tr>
<td>700</td>
<td>1401</td>
<td>0.66</td>
<td>0.76</td>
<td>1.41</td>
</tr>
<tr>
<td>800</td>
<td>1595</td>
<td>0.79</td>
<td>0.81</td>
<td>1.54</td>
</tr>
<tr>
<td>1000</td>
<td>1625</td>
<td>0.81</td>
<td>1.10</td>
<td>2.80</td>
</tr>
</tbody>
</table>

*85% of pore volume is below this size.

An increase in ordering is also observed at high temperatures. Electrochemical characterizations of CDC electrodes were conducted at 60 °C in ethyl-methylimidazolium-bis(trifluoromethane-sulfonyl)imide liquid ionic liquid (EMI-TFSI). Ion sizes were calculated as 0.79 and 0.76 nm in the longest dimension for TFSI and EMI ions, respectively. The EMI-TFSI ion sizes are within the range of the CDC pore size. Moreover, the anion and cation sizes are very close. This allows us to assume that approximately the same pore size is required for carbon anode and cathode. Cyclic voltammetry (20 mV/s) as well as galvanostatic experiments (from 5 up to 100 mA/cm²) were conducted between 0 and 3 V in 2-electrode cells (see Supporting Information for details). No faradic effects and very reproducible behavior have been observed (Figure 1). The electrochemical impedance spectroscopy (EIS) plot is typical for an EDLC behavior.

Figure 2 shows the change of the CDC specific capacitance (F/g) versus the chlorination temperature, calculated from the galvanostatic experiment at 5 mA/cm². This plot is in excellent agreement with results obtained for an organic electrolyte solution: the capacitance decreases for samples prepared in the 500–1000 °C range when the pore size increases from 0.74 up to 1.1 nm, thus confirming the key contribution of the subnanometer micropores in the charge storage in EDLCs electrode. Also important to mention is that the capacitance values of these CDCs are more than 160 F/g and 85 F/cm³, while standard activated carbons with large and broader pore size distributions are known to present capacitance values lower than 100 F/g and 50 F/cm³ in ionic liquids under the same or similar testing conditions. We confirmed these values by conducting measurements on a commercial activated carbon from Kuraray and receiving 91 F/g and 45 F/cm³ under the same conditions. This clearly highlights the need for fine-tuning the pore size of porous materials in the subnanometer range for EDLC application. The huge decrease of both gravimetric and volumetric capacitances for samples prepared at 400 °C points out the limitation we are facing. This should be explained by the carbon pore size that

1. Université Paul Sabatier.
2. Université de Toulouse.
3. Drexel University.
The accuracy of the porosity measurements (see Supporting Information) leads to the conclusion that the maximum capacitance obtained for a pore size of 0.7 nm is in good agreement with the ion size. At this point, pore size is perfectly adapted to the ion size and ion adsorption is achieved in the most efficient way, by minimizing the free space available. When pore size is increased, the average distance between pore wall and the center of the ion (\(d\)) increases and then the capacitance for pores larger than around 0.7 nm decreases according to

\[
C = \varepsilon A/d
\]

where \(A\) is the surface area, \(d\) is the separation between carbon and ions, and \(\varepsilon\) is the local dielectric constant of the electrolyte. If the pores become even 50% larger than the optimum pore size (1.1 vs 0.68 nm), there is still room for just one ion per pore, which should be oriented along the longest dimension of the pore, naturally leading to a lower volumetric capacitance. When the pore size is decreased below 0.68 nm, there is less and less space available for double layer charging since ions cannot get into the smallest pores; as a consequence the capacitance is decreased.

Thus, this work has shown that the pore size leading to the maximum double-layer capacitance is very close to the ion size.

Both larger and smaller pores lead to a significant drop in capacitance. This work suggests a general approach to selecting a porous electrode/electrolyte couple, which has been now proved for both solvated salts and solvent-free liquid electrolytes.

Acknowledgment. The authors would like to thank the French Délegation Générale pour l’Armement who supported the PhD grant of C.L. J.C. was supported by a NSF GRFP fellowship, work at Drexel University was supported by grants from the U.S. Department of Energy EERE and BES programs.

Supporting Information Available: Detailed experimental procedures, gas sorption measurements, electrochemical characterization including voltammetry, galvanostatic cycles and EIS measurements. This material is available free of charge via the Internet at http://pubs.acs.org.

References

JA7106178