Ethanol reduced molybdenum trioxide for Li-ion capacitors

Tianqi Li, Majid Beidaghi, Xu Xiao, Liang Huang, Zhimi Hu, Wanmei Sun, Xun Chen, Yury Gogotsi

A rticle history:
Received 29 February 2016
Received in revised form 4 May 2016
Accepted 5 May 2016
Available online 6 May 2016

Keywords:
Molybdenum trioxide
Supercapacitor
Li-Ion capacitor
Energy storage

A bstract
Orthorhombic molybdenum trioxide (α-MoO3) is a layered oxide with promising performance as electrode material for Li-ion capacitors. In this study, we show that expansion of the interlayer spacing (by ~0.32 Å) of the structure along the b-axis, introduced by partial reduction of α-MoO3 and formation of MoO3-0.16 (x=0.06-0.43), results in enhanced diffusion of Li ions. Binder-free hybrid electrodes made of MoO3-0.16 nanobelts and carbon nanotubes show excellent electrical conductivity. The combination of increased interlayer spacing and enhanced electron transport leads to high gravimetric and volumetric capacitances of about 420 F/g or F/cm3 and excellent cycle life of binder-free MoO3-0.16 electrodes.

1. Introduction

Electrochemical capacitors (ECs) [1–6] are energy storage devices with higher power densities comparing to batteries. Electric double-layer capacitors (EDLCs) are the most common type of ECs [3], which store charge electrostatically at the electrode/electrolyte interface without any charge transfer. On the contrary, batteries [7–9] only benefit from the Faraday currents from redox reactions introducing phase transformations (nickel metal hydride battery [10,11] and lead-acid battery [12]) or intercalation reactions (Li-ion battery [13]). By studying the charge storage mechanism in ruthenium dioxide (RuO2), Conway proposed the concept of redox current-induced pseudocapacitance [5]. Transition metal oxides such as RuO2 and manganese dioxide (MnO2) [14–16] show pseudocapacitive properties and are superior to EDLCs in terms of gravimetric and volumetric capacitance in aqueous electrolytes. However, the charge storage mechanism of pseudocapacitors limited to surface redox reaction determines the total amount of energy stored. Generally, volumetric capacitance is of significance for applications such as portable electronics and electric vehicles (EVs) due to the limited available space for the energy storage device. In order to achieve a higher volumetric capacitance, researchers are focusing on developing high mass density carbon or layered compounds such as 2D carbides (MXenes) [17] and MoS2 [18] for EC electrodes [17,19]. It should be noted that these materials exhibit very high volumetric capacitances, but lower gravimetric capacitances compared to transition metal oxides. It is challenging to simultaneously obtain high gravimetric and volumetric capacitances.

Orthorhombic molybdenum trioxide (α-MoO3) with a layered structure and redox active surface has been widely reported as a promising electrode material for ECs [20] and Li-ion batteries [21–23]. Previously, we reported amorphous WO3-x/MoO3-x hybrid structures, [24] which showed excellent gravimetric capacitance due to surface redox reactions. Later, we reported on hydrogenated MoO3 with a high volumetric capacitance when used in an aqueous Li-ion capacitor [25] and in sea water electrolyte [26]. Unfortunately, the working potential window (V) for aqueous electrolytes is limited by electrolysis of water, which limits the energy (E) and power (P) of the supercapacitors (E=CV^2/2, P=V^2/R, where C is capacitance and R is resistance). The working voltage window of ECs can be extended by using organic electrolytes. [27,28] Moreover, the electrode structure has an important effect on capacitive performance, which was not studied intensively previously. By using nanocrystalline electrodes, Dunn et al. demonstrated the intercalation process in ordered mesoporous MoO3 resulting in charge storage of 605 C/g in a 2 V voltage window in an electrolyte of 1 M LiClO4 in propylene carbonate [20].

Although α-MoO3 has showed some promise, its low rate capability and poor cycling life [29,30] impose restrictions on its
usage. These issues can be ascribed to slow ion diffusion in the pores of the material and also poor electron transport due to low electronic conductivity of MoO$_3$. Both problems result in a low rate capability of the electrodes, while the latter problem also affects the cycling stability due to the nonuniform polarization of the electrodes.

Herein, we focus on enhancing the ionic and electronic conductivities of α-MoO$_3$ nanobelts by partial reduction of α-MoO$_3$ and introduction of oxygen vacancies into its structure. We found that the reduced form of α-MoO$_3$ (MoO_3^{-x}) has a larger interlayer spacing along b-axis, which results in enhanced ion diffusion in the structure. Moreover, the MoO$_3^{-x}$ showed a higher electronic conductivity compared to α-MoO$_3$ before reduction. Binder-free hybrid electrodes [31] of carbon nanotubes (CNTs) and MoO$_3^{-x}$ nanobelts show an excellent specific capacitance of 418 F/g (including CNTs) in LiClO$_4$ ethylene carbonate/dimethyl carbonate electrolyte (volumetric capacitance of 418 F/cm3). Addition of CNTs to the electrode proved to be critical and about 90.2% of capacitance was retained after testing the hybrid electrode for 5000 cycles. Electrodes without CNT addition only retained 30% of their initial capacitance after the same number of cycles.

2. Experimental section

2.1. Materials

Mo powder (99.5%) and polyvinylidene fluoride (PVDF) were bought from Aladdin. The carbon black was bought from Alfa Aesar. Sodium dodecyl sulfate (SDS, 98%) and hydrogen peroxide (30%, H$_2$O$_2$) were purchased from Sinopharm Chemical Reagent Co., Ltd.

2.2. Synthesis

The α-MoO$_3$ nanobelts were synthesized via a hydrothermal process as reported elsewhere [25]. Briefly, 2 g molybdenum powder was added into 40 mL of deionized water and stirred to achieve a uniform mixture. Then, 20 mL of H$_2$O$_2$ was slowly dropped into the obtained mixed solution. After stirring for 30 min, the saffron yellow precursor solution was transferred to a Teflon lined stainless steel autoclave and heated at 180 °C for 12 h. The product precipitate was filtered and rinsed with deionized water, followed by drying at 60 °C for 12 h. For reduction of MoO$_3$ nanobelts, 0.3 g of MoO$_3$ was added into 15 mL of deionized water and 15 mL of ethanol in a Teflon lined stainless steel autoclave and heated at 180 °C for 12 h. The reduced form of MoO$_3$ nanobelts, 0.3 g of MoO$_3$ was added into 15 mL of deionized water and 15 mL of ethanol in a Teflon lined stainless steel autoclave and.
heated at different temperatures. Sample notation includes the reduction temperature: for example, MoO$_3$ reduced at 120 °C is labeled as MoO$_3$–x–120.

2.3. Fabrication of electrodes

As shown in Fig. 1, the electrodes were prepared in two ways. For binder-free electrodes, MoO$_3$–x nanobelts, multiwalled carbon nanotubes (CNTs, prepared by a floating catalyst vapor deposition; length ~500 μm) and sodium dodecyl sulfate (as surfactant) were added to deionized water in a 4:1:40 ratio. This mixture was then sonicated for 0.5 h and filtered on a Celgard membrane (3501 Coated PP, Celgard LLC, Charlotte, NC) using a standard vacuum filtration setup to form the binder-free electrodes. The conventional electrodes were fabricated by pasting a mixture of MoO$_3$–x nanobelts, PVDF, and carbon black at the 14:5:1 ratio on aluminum foil.

2.4. Characterization

The morphology and the structure of samples were studied by field-emission scanning electron microscopy (FE-SEM, FEI Nova 450 Nano) accompanied by energy-dispersive X-ray spectroscopy (EDS), high-resolution transmission electron microscopy (HR TEM, 450 Nano) accompanied by energy-dispersive X-ray spectroscopy (EDS), field-emission scanning electron microscopy (FE-SEM, FEI Nova S1a), suggesting a partial reduction of MoO$_3$ and introduction of oxygen vacancies in the structure [25]. Fig. 1b shows an SEM image of MoO$_3$–x–120 that has a similar morphology to the as-synthesized MoO$_3$ (Fig. S1b). The color of the MoO$_3$–x was darker after hydrothermal treatment at higher temperatures due to further reduction by ethanol. Although a complete understanding of the reduction of MoO$_3$ by this method needs further studies, we suggest the following reduction mechanism. The α-MoO$_3$ has a layered structure, which consists of bilayers of MoO$_6$ octahedra that are held together by van der Waals forces in the [010] direction. [32,33] During the hydrothermal treatment of the ethanol intercalated α-MoO$_3$ the Mo=O double bonds in between the layers in [010] direction can be reduced to Mo=O–H, resulting in an increased interlayer spacing and the observed color changes in the material. X-ray photoelectron spectroscopy (XPS) studies show two strong peaks corresponding to Mo$^{6+}$ for sample before and after reduction, and also two new weaker peaks corresponding to Mo$^{5+}$ that appears in the spectra for the reduced samples (Mo 3d spectrum in Fig. 1c and Fig. S2a). Also, comparison of the O1s spectra of the samples before and after reduction (Fig. S2) shows the appearance of a new peak after reduction, suggesting that

![Fig. 2. (a) Cyclic voltammograms of CNT-MoO$_3$–120, CNT-MoO$_3$–150 and CNT-MoO$_3$–x at 20 mV/s. (b) The gravimetric capacitance vs. scan rate for CNT-MoO$_3$–x–120, CNT-MoO$_3$–x–150 and CNT-MoO$_3$–x from 2 mV/s to 200 mV/s.](image)
Mo=O has changed to Mo–O–H [33]. By increasing the reduction temperature, Mo–O–Mo bonds could be ruptured, leading to formation of cracks in nanobelts, such as the case of MoO$_3$–x–150 shown in Fig. S1c. For the samples treated at 180 °C (MoO$_3$–x–180), the Mo–O–Mo bonds were heavily ruptured resulting in the damage of nanobelts and the form of nanopowders (Fig. S1d). X-ray diffraction (XRD) patterns of the untreated MoO$_3$ powder and samples treated at various temperatures are shown in Fig. 1d. The patterns of MoO$_3$–x, MoO$_3$–x–90, MoO$_3$–x–120, and MoO$_3$–x–150 closely match that of the orthorhombic MoO$_3$ (JCPDS reference card no. 05-0508). However, the treatment at 180 °C caused the phase transformation from orthorhombic MoO$_3$ to monoclinic MoO$_2$ (JCPDS reference card no. 78-1071). Fig. 1e shows the (020) peaks of all samples. The changes in b lattice parameter of α-MoO$_3$ can be calculated by the change in the position of the (020) peak, which increases from 13.80 Å for MoO$_3$–x to 14.12 Å for MoO$_3$–x–120 and MoO$_3$–x–150. This means that the reduction results in the increasing interlayer spacing of the oxide, which can facilitate Li intercalation. Transmission electron microscopy (TEM) imaging was performed along the [010] crystal orientation (Fig. S3). According to the selected area electron diffraction (SAED) of MoO$_3$–x and MoO$_3$–x–120, the crystal face (010) kept its structure after the reduction. It is inferred that ethanol reacts more easily with oxygen shared by neighboring octahedra of two bilayers. With the temperature rising, the kinetic control of ethanol reduction changes to the thermodynamics one and ethanol begins to react with the oxygen between the Mo atoms of the same (010) layer. Therefore, it was concluded that a reduction temperature of 120 °C is the optimum choice, since MoO$_3$–x–120 crystals keep the layered structure of MoO$_3$–x with enhanced interlayer spacing, but no cracking or MoO$_2$ formation occurs.

To confirm the enhanced ionic conductivity of the samples after reduction, electrochemical performance of the MoO$_3$–x, MoO$_3$–x–120 and MoO$_3$–x–150 was studied systematically in a three-electrode configuration in a potential window of −1.6 V to 0.4 V vs. Ag/AgCl (1.5 V to 3.5 V vs. Li/Li$^+$) in an electrolyte of 1 M LiClO$_4$ in 1:1 mixture of ethylene carbonate and dimethyl carbonate. All electrodes were fabricated by vacuum filtration of a mixture of MoO$_3$–x and carbon nanotubes (CNT) at 4:1 ratio, resulting in binder-free electrodes. The electrodes with 20 wt% CNT content show an electrical conductivity of 4 S/cm which is much higher than the conductivity of the electrodes without CNTs (< 10$^{-5}$ S/cm), measured by the four-point probe method. Fig. 2a shows the CV curves of different electrodes recorded at 20 mV/s. As explained by Augustyn et al. [34], a charging time ranging from 10 s to 10 min is appropriate for intercalation pseudocapacitor materials and devices performing on this timescale can bridge the gap between batteries and EDLCs. We recorded CV curves at 20 mV/s, which is equivalent to 100 s charging time for the 2 V voltage window. The CV curve of CNT-MoO$_3$–x–120 clearly shows Li intercalation (A) and deintercalation (B) peaks. These peaks are broader and smaller in the case of CNT-MoO$_3$–x–150 and almost entirely disappear in the case of untreated CNT-MoO$_3$–x. The potential difference between the intercalation and deintercalation peaks is 0.34 V for MoO$_3$–x–120 and increases to 0.68 V in the
case of MoO$_3$\textsubscript{3-x} - 150, which is a sign of a better reversibility in the former case. As Fig. S1c shows, the nanobelts were cracked at 150 °C, leading to poor contact between MoO$_3$\textsubscript{3-x} - 150 nanobelts and CNTs, which is probably the reason for smaller and broader peaks for MoO$_3$\textsubscript{3-x} - 150 compared to MoO$_3$\textsubscript{3-x} - 120. At lower scan rates, the intercalation peaks in CVs became sharper with a smaller difference between intercalation and deintercalation potentials (Fig. S7a). Fig. 2b shows the calculated specific capacitances of all samples at various scan rates. At a low scan rate of 2 mV/s, the specific capacitance values of CNT-MoO$_3$\textsubscript{3-x} - 120 and CNT-MoO$_3$\textsubscript{3-x} - 150 are 418 F/g and 375 F/g, respectively, which are much higher than the specific capacitance of the untreated sample (182 F/g). The similar (010) peaks in XRD patterns of CNT-MoO$_3$\textsubscript{3-x} - 120 and CNT-MoO$_3$\textsubscript{3-x} - 150 (Fig. 1d), can be interpreted as similar interlayer spacings for these samples. Therefore, under a slow scan rate of 2 mV/s there is only a small difference in their specific capacitances. However, as the scan rate increases to 200 mV/s, specific capacitance of CNT-MoO$_3$\textsubscript{3-x} - 120 (152 F/g) becomes about two times higher than CNT-MoO$_3$\textsubscript{3-x} - 150 (79 F/g). This is related to a lower electronic conductivity of cracked CNT-MoO$_3$\textsubscript{3-x} - 150 (shorter belt length). The untreated CNT-MoO$_3$\textsubscript{3-x} shows a much lower capacitance (182 F/g at 2 mV/s), which constantly decreases to a very small value of 19 F/g at 200 mV/s. This indicates that the untreated CNT-MoO$_3$\textsubscript{3-x} samples should be mainly regarded as a Li-ion battery electrode material and cannot be used at rates expected for Li-ion capacitors.

We further studied the kinetics of Li intercalation into CNT-MoO$_3$\textsubscript{3-x} - 120 samples following a method suggested by Dunn et al. to distinguish surface- and diffusion-controlled responses of pseudocapacitive materials [20,35,36]. CV curves of CNT-MoO$_3$\textsubscript{3-x} - 120 samples at scan rates ranging from 2 mV/s to 200 mV/s are shown in Fig. 3a. The following equation was used to analyze the CV discharge peak position:

$$i = \alpha v^n$$

where i is current at peak position, v is scan rate, α and n are adjustable values. n value of 0.5 corresponds to a diffusion-controlled process and n = 1 means that the process is surface-controlled. Theoretically the n value for an ideal capacitor should be equal to one, but in practice it is less than one due to the effects of ion diffusion and/or ohmic contribution. As Fig. 3b shows, for CNT-MoO$_3$\textsubscript{3-x} - 120 the n value was about 0.9 (nonlinear curve

Fig. 4. (a) The cycle life testing of MoO$_3$\textsubscript{3-x} - 120 in the traditional (mixed with 5 %wt PVDF and 25 %wt carbon black) electrode and binder-free electrode. (b) SEM images of the electrode with binder after 500 cycles. (c) and (d) SEM images of binder-free electrode before and after 5000 cycles.
fitted from 2 to 100 mV/s), which means a surface-controlled process is dominant at all scan rates. As explained by Dunn et al. [35], the current response of the electrodes at a fixed potential can be expressed as the contributions of the surface-controlled capacitive processes and diffusion-controlled processes according to:

\[i(V) = k_1v^{1/2} + k_2v \]

where \(i(V) \) is the current at a specific potential, \(v \) is scan rate, \((k_1v^{1/2}) \) and diffusion-controlled \((k_2v^{1/2}) \). And \(V \) is the potential at which \(i \) is measured. For analytical purposes, Eq. (2) can be rearranged to:

\[(i(V))^{1/2} = k_1 + k_2v^{1/2} \]

\(k_1 \) and \(k_2 \) can be determined from the slope and intercept of the \((i(V))^{1/2} \) vs. \(v^{1/2} \) graph. Fig. S5 shows this graph calculated for the CV peak current at various scan rates. \(k_1 \) and \(k_2 \) were calculated from this graph to be equal to 0.097 and 0.79, respectively. This means that about 76% of the current at peak potentials are from capacitive surface-controlled processes at 100 mV/s. This explains the high rate capability of the reduced samples as the charge storage in these samples is not limited by diffusion of ions (Fig. 2b).

The high-rate ion intercalation/deintercalation into the structure of the reduced samples can also be observed by the electro-chemical impedance spectroscopy (EIS) in Fig. 3c. The high-frequency (200 kHz to 50 Hz) region of the Nyquist plot shows a smaller Warburg region related to ion diffusion resistance for the reduced sample. Its low frequency region of the Nyquist plot is much closer to a vertical line compared to that of the untreated sample, showing the excellent capacitive performance. In addition, the characteristic frequency of the reduced electrodes \((f_0) \) was calculated to be about 4 Hz from the impedance data. The relaxation time constant \((\tau_0=1/f_0) \) of the reduced samples is also much closer to a vertical line compared to that of the untreated sample, showing the excellent capacitive performance. In other words, parts of the nanobelts that are covered with binder are more constrained and expand less during Li intercalation. Consequently, this results in transformation of nanobelts to nanoparticles after 500 cycles (as shown in SEM image of Fig. 4a). In contrast, the binder-free electrodes, which are free to move during expansion/contraction while being charged/discharged, keep their initial morphology after 5000 charge and discharge cycles (Fig. 4c and d). The high conductivity of CNTs in the network of CNTs and MoO\(_3\)–x nanobelts results in a uniform polarization and expansion of the electrodes during charging. Moreover, the increased conductivity of the electrodes promotes their rate capability, as discussed above.

The results presented here illustrate the benefits from both improved ion diffusion and electron transport in the partially reduced MoO\(_3\)–x \((x=0.06-0.43) \) electrode are required for rapid charging of electrodes [37]. The enhanced capacitance, rate capability and cyclic performance of the electrode are the results of (1) increased Li ion intercalation/deintercalation rates due to a larger interlayer spacing (from 13.80 Å to 14.12 Å) in the oxide structure, and (2) fast electron transport in the electrodes as a result of formation of a CNT/MoO\(_3\)–x network. The best performance was achieved for samples reduced at 120 °C \((\text{MoO}_3\text{–}_x = 120) \) that showed excellent capacitive behavior at a high scan rate in organic electrolyte (152 F/g at 200 mV/s). The importance of the CNT addition for uniform polarization of the electrode and its effects on cyclic stability of the electrodes has been shown.

Acknowledgement

The work performed at Drexel University was supported by the Fluid Interface Reactions, Structures and Transport (FIRST) Center, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences. The work at WNLO was financially supported by the National Natural Science Foundation of China (51322210 and 61434001) and Director Fund of WNLO. The authors also thank Dr. J. Su and Dr. Z. Ling for experimental help. The authors also acknowledge support of the Analysis and Testing Center of Huazhong University of Science and Technology.
Appendix A. Supplementary material

Supplementary data associated with this article can be found in the online version at http://dx.doi.org/10.1016/j.nanoen.2016.05.004.

References

Majid Beidaghi is an Assistant Professor of Materials Engineering at the Department of Mechanical Engineering at Auburn University. Previously Dr. Beidaghi was a Research Associate at A. J. Drexel nanomaterials Institute, Department of Material Science and Engineering at Drexel University from 2012 to 2015. During this time, he was a part of the Fluid Interface Reactions, Structures and Transport (FIRST) Center, an Energy Frontier Research Center (EFRC) funded by the U.S. Department of Energy. He received his PhD in Materials Science and Engineering from Florida International University in 2012. His research interests are in the field of electrochemical energy storage with a main focus on the synthesis of multifunctional materials and design and fabrication of electrochemical energy storage devices such as electrochemical capacitors and batteries.

Xu Xiao received his B.S. degree in School of Physics from Huazhong University of Science and Technology (HUST), PR China in 2011. He is a Ph.D. candidate in Wuhan National Laboratory for Optoelectronics and School of Optical and Electronic Information at HUST. His research interests include flexible electronics and flexible solid-state supercapacitor for self-powered system.

Liang Huang received his Ph.D. in the Department of Chemistry and Chemical Engineering, Lanzhou University in 2013. From 2011–2013, he was a visiting student in Georgia Institute of Technology. He is assistant professor in Wuhan National Laboratory for Optoelectronics now, and his main research interest is focusing on exploring high electrochemical performance nanomaterials for supercapacitor.

Zhimi Hu received her B.S. degree in College of chemistry and molecular sciences from Wuhan University, PR China in 2010. Now she is a Ph.D. candidate in Wuhan National Laboratory for Optoelectronics. Her research interests include electrode materials of supercapacitors for self-powered system.

Wanniel received her Bachelor's degree in Chemistry from Huazhong University of Science and Technology. She is a Ph.D. candidate in Wuhan National Laboratory for Optoelectronics and School of Optical and Electronic Information at HUST. Her research interests include optoelectronic material synthesis and electrochemical capacitors.

Tianqi Li received his Bachelor's degree in Chemistry from Huazhong University of Science and Technology. He is a Ph.D. candidate in Wuhan National Laboratory for Optoelectronics. His research interest is electrochemistry and electrochemical capacitors.
Xun Chen is studying for his B.Sc. degree in Optoelectronic Information Science and Engineering and double degree in German at Huazhong University of Science and Technology. He will study as an exchange student in School of Electrical Engineering, Information Technology and Computer Engineering in RWTH Aachen University in 2017. His interests include development of electrochemical supercapacitors and optoelectronic materials.

Yury Gogotsi is Distinguished University Professor and Trustee Chair of Materials Science and Engineering at Drexel University in Philadelphia, USA. He is the founding Director of the A.J. Drexel Nanomaterials Institute and Associate Editor of ACS Nano. He works on nanostructured carbons and two-dimensional carbides for energy related and biomedical applications. He has co-authored 2 books, more than 400 journal papers and obtained more than 50 patents. He has received numerous national and international awards for his research. He has also been recognized as Highly Cited Researcher by Thomson-Reuters in 2014 and 2015, and elected as a Fellow of AAAS, MRS, RSC, ECS and ACerS, and a member of the World Academy of Ceramics.

Jun Zhou received his B.S. degree in Material Physics (2001) and his Ph.D. in Material Physics and Chemistry (2007) from Sun Yat-Sen University, China. During 2005–2006, he was a visiting student in Georgia Institute of Technology. After he obtaining his Ph.D., he worked in Georgia Institute of Technology as a research scientist. He joined in Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology as a professor from the end of 2009. His main research interest is wearable energy harvesting and storage devices.