Short communication

High capacitance of surface-modified 2D titanium carbide in acidic electrolyte

Yohan Dall’Agnese a,b,c, Maria R. Lukatskaya c, Kevin M. Cook c, Pierre-Louis Taberna a,b, Yury Gogotsi c, Patrice Simon a,b,*

a Université Paul Sabatier, CIRIMAT UMR CNRS 5085, 118 route de Narbonne, 31062 Toulouse, France
b Réseau sur le Stockage Electrochimique de l’Energie (RS2E), FR CNRS 3459, France
c Department of Materials Science and Engineering and A. J. Drexel Nanomaterials Institute, Drexel University, Philadelphia, PA 19104, USA

A R T I C L E I N F O

Article history:
Received 16 August 2014
Received in revised form 30 August 2014
Accepted 2 September 2014
Available online 16 September 2014

Keywords:
Electrochemical capacitors
Two-dimensional materials
XPS
Surface chemistry

A B S T R A C T

The electrochemical behavior of Ti3C2, a two-dimensional titanium carbide from the MXene family, in H2SO4 electrolyte is reported. To demonstrate the effect of surface chemistry on capacitive performance, Ti3C2 was modified by delamination or intercalation treatments. Electrochemical testing revealed an increase in capacitance, which was attributed to oxygen-containing functional groups. An extraordinary high intercalation capacitance of 415 F·cm−2 at 5 A·g−1 was obtained from electrodes with a specific surface area of just 98 m2·g−1. Values up to 520 F·cm−2 were recorded for delaminated MXene films at 2 mV·s−1. This study highlights that the behavior of materials from the large family of two-dimensional MXene can be tuned by suitable modification of their surface chemistry.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The development of suitable energy solutions to satisfy increasing energy demands is one of the key technological challenges our society is facing [1]. The main advantage of electrochemical capacitors (ECs) is that they can deliver high power densities (up to 20 kW kg−1), however they suffer from a lower energy densities compared to batteries [2].

There are two types of ECs which differ by the charge storage mechanism realized in them: 1) electrical double layer capacitors, EDLCs, where charge is stored by electrosorption of ions at the electrode–electrolyte interface, and 2) pseudocapacitors, where charge is stored via fast surface redox reactions [3]. In case of EDLCs, capacitance is proportional to the materials’ specific surface area, SSA. Therefore carbon-based materials are used since they exhibit high SSAs from 1000 to 2000 m2·g−1, giving capacitances up to 50–80 F·cm−2 and 150–200 F·g−1 [4]. The best known pseudocapacitive materials are MnO2, RuO2 and Nb2O5, since they provide multiple oxidation states during charge/discharge cycles and store the energy via reversible surface redox reactions [5–8]. Enhancement of the energy density can be achieved with hybrid materials, such as transition metal oxide particles inserted into porous carbon or chemically modified carbon with oxygen- or nitrogen-containing functional groups [4,8–15].

Our strategy is to develop new electrodes for aqueous supercapacitors from a new family of 2D materials called MXenes that have recently demonstrated promising results as electrodes for energy storage applications [16–25]. These so-called MXenes are synthesized by selectively etching out the A layers from MAX phases, a class of conductive ternary carbides and nitrides composed of an early transition metal, M, an element from group 13 or 14, denoted A, and carbon and/or nitrogen, X, with the general formula Mn+1 AxTx [26,27]. This synthesis yields electrically conductive MXene layers with −F and −OH/O surface termination that can be abbreviated as Tx to give a general formula of Mn+1 AxTx. Ti3C2Tx has been investigated as electrode for lithium ion batteries and supercapacitors [17,20]. Moreover, the intercalation of a wide range of cations between Ti3C2Tx layers, such as Li+ − , Na+ − , K+ − , NH4+ , Mg2+ + and Al3+ + has been demonstrated [19,20]. So far, the best electrochemical results were obtained for Ti3C2 “paper” electrodes prepared by filtration of the delaminated MXene few-layer flake solution, giving a capacity of 410 mAh·g−1 at 1 C rate for Li-ion batteries and a high volumetric capacitance of up to 350 F·cm−3 for supercapacitors [17,19].

In this work, we investigate the influence of the surface chemistry of Ti3C2Tx on its electrochemical performance in the acidic electrolyte sulfuric acid, chosen due to its excellent electrical conductivity (0.26 S·cm−1 at 1 M). As-produced Ti3C2Tx has a moderate SSA of 23 m2·g−1 and is terminated with −F and −OH/O functional groups, where the −F group may be a detriment to charge storage and −F is not known to participate in any pseudocapacitive energy storage processes. Therefore, our goal was to chemically modify Ti3C2Tx using two
different processes: 1) given the known intercalation of polar molecules and cations between Ti3C2Tx layers [16,19], treatment in basic aqueous solutions should replace –F terminal groups with hydroxyl groups as Ti–F bonds become unstable at high pH [28]; 2) the intercalation of DMSO is known to lead to delamination of individual Ti3C2Tx layers, giving an increase in an electrode’s SSA up to ~100 m2·g−1 [17] and allowing for the water access and atmospheric oxidation of the Ti3C2Tx surface. To monitor these processes, the structure and chemistry of the Ti3C2Tx electrodes were analyzed by XRD and XPS.

2. Experimental

The multilayer Ti3C2Tx was modified by chemical treatment in aqueous solutions with 1 molar salt concentration; 0.4 g of Ti3C2 was added to 50 mL of the salt solution, stirred for an hour; then the solution was decanted after powder sedimentation, this process was repeated 5 times. The SSA of MXene was not affected by the intercalation of these salts.

A scanning electron microscope (Zeiss, Supra 50VP, Oberkochen, Germany) was used to investigate the morphology of the samples. X-ray diffraction patterns were recorded with a powder diffractometer (Rigaku SmartLab) using Cu Kα1 radiation (λ = 1.54 Å) with 0.01° 2θ steps and 6 s dwelling time. An X-ray photoelectron spectrometer (VersaProbe 5000, Physical Electronics Inc., USA) employing a 100 μm monochromatic Al Kα X-ray beam to irradiate the surface of the samples was used to obtain XPS spectra. Emitted photoelectrons were collected using a 180° hemispherical electron energy analyzer. Samples were analyzed at a 45° takeoff angle between the sample surface and the path to the analyzer. High-resolution spectra were taken at a pass energy of 23.50 eV and with a step size of 0.05 eV. The peak fitting was carried out using CasaXPS Version 2.3.16 RP 1.6.

The electrochemical performance was tested using a VMP3 potentiostat (Biologic S.A.) with a three-electrode Swagelok cell with Ag/AgCl as reference electrode and overcapacitative activated carbon as counter electrode. Multilayer Ti3C2 electrodes were mixed in ethanol with 5 wt.% polytetrafluoroethylene binder (60 wt.% in H2O, Aldrich) and 5 wt.% carbon black (Alfa Aesar), then rolled and cut into 7 mm μm diameter disks with a thickness between 50 μm and 70 μm. The electrodes had an average mass loading of 2.6 mg and densities of 0.79 g·cm−3, 1.37 g·cm−3 and 1.51 g·cm−3 for Ti3C2Tx, KOH–Ti3C2 and KOAc–Ti3C2 electrodes, respectively. Delamination of Ti3C2Tx was performed by DMSO intercalation, as described elsewhere [17]. The colloidal suspension was filtered using a cellulose-ester filter (Fisher Scientific) to obtain an 8 μm free-standing paper with a density of 1.62 g·cm−3, later cut into 25–35 mm2 square electrodes.

3. Results and discussion

Fig. 1 shows a schematic view of these two chemical modification paths for Ti3C2Tx. The schematic’s top right corner depicts treatment resulting in synthesis of delaminated layers of Ti3C2, denoted as d-Ti3C2. The bottom right corner schematic in Fig. 1 represents a K+ ion chemically intercalated into Ti3C2Tx. Potassium hydroxide and potassium acetate were selected as the two salts to be intercalated into Ti3C2Tx to probe the effect of the anion on the Ti3C2Tx surface chemistry.

X-ray diffraction (XRD) patterns of Ti3C2Tx, KOH–Ti3C2, KOAc–Ti3C2 and d-Ti3C2 are shown in Fig. 2A. The intercalation of species between layers induces an increase in the c-lattice parameter (which defines distance between single Ti3C2 sheets), noticeable by the 2θ downshift of the (0002) peak position compared to Ti3C2Tx. The two chemicals (KOH and KOAc) share the same cation, thus the difference in their c-lattice parameter is related to other factors, such as pH. Yet, despite of acetate ion being larger than hydroxide ion, KOH–Ti3C2 has a larger c-lattice parameter than KOAc–Ti3C2, thus the difference cannot be directly correlated with the size of the anion. As discussed below, the KOH and KOAc treatments lead to two different surface chemistries, which may have an effect on the c-lattice parameter.

X-ray photoelectron spectroscopy (XPS) was used to characterize the surface chemistry of the samples. High-resolution XPS spectra of the samples (Ti3C2Tx, KOH–Ti3C2, KOAc–Ti3C2 and d-Ti3C2, shown in Fig. 2B–D) in the F 1s region indicated that the Ti3C2Tx sample contained a large amount of F-terminated Ti (Fig. 2B). It was also noticed that AlF3 salt residue from MAX phase etching was only present in the KOAc–Ti3C2 and Ti3C2Tx samples. It was completely removed after KOH or DMSO treatment. The intensity of the Ti–F peaks decreases in the order d-Ti3C2, KOAc–Ti3C2 and KOH–Ti3C2, being the lowest for the latter one. The signal of the Ti–F component, which was initially at 684.4 eV, shifts toward a higher-binding energy as F is removed from Ti as fluoride salt.

Due to the 2D-nature of the Ti3C2Tx, oxidation does not proceed homogeneously and likely starts from the outer edges of the Ti3C2Tx grains, giving oxides and mixed carboxides (TiCxOy) at the flake edges and on the outermost surface layer of the multilayer particle, while Ti3C2 remains in the center of the grain. This inhomogeneity gives

![Fig. 1](image-url) (A) Schematic illustration of the modifications of Ti3C2Tx: delamination and intercalation of K+. Scanning electron microscope images of (B) Ti3C2Tx, (C) KOH–Ti3C2 and (D) d-Ti3C2.
Fig. 2. Characterization data of Ti₃C₂-based materials after surface modification in various intercalation agents: (A) XRD in the (0002) peak region, and (B–D) high-resolution XPS spectra in the F 1s region, Ti 2p region and K 2p region, respectively.

Fig. 3. Electrochemical performance of Ti₃C₂-based electrodes in 1 M H₂SO₄. (A) CV profiles at 10 mV·s⁻¹. (B) Summary of rate performances. (C) Charge and discharge volumetric capacitance vs. cycle number of KOH-Ti₃C₂ and d-Ti₃C₂ electrodes from galvanostatic cycling at 5 A·g⁻¹. (D) Galvanostatic charge–discharge profile of d-Ti₃C₂.
rise to the broadened and convoluted spectra seen in the Ti 2p region (Fig. 2C). In this region, the Ti-carbide photoelectron lines arise from Ti3C2, while the Ti (II) and Ti (III) components arise from these mixed oxides and carbonates, and the Ti (IV) component arises from TiO2 present on the surface of the grains as oxidation goes to completion. These spectra also include a component for Ti-F that becomes less prominent and merges with that for Ti (IV), likely as a result of the formation of a small amount of the intermediate, fluorinated TiO2, as hydroxyl groups replace the –F termination during the oxidation of the outer surface of TiC2. This region also indicates oxidation of the surface of the Ti3C2Tx grains to Ti (IV) (TiO2) for all modified Ti3C2Tx samples. Accordingly, instead of F-termination, the KOH–Ti3C2, KOAc–Ti3C2 and d-Ti3C2 surfaces are terminated with oxygen-containing groups. High-resolution spectra of the samples in the K 1s region (Fig. 2D) reveal two components, the first is for K+ that is strongly electrosorbed and the second component suggests that K+ is present as salt, probably KF. The electrosorbed K+ is much more prevalent in KOAc–Ti3C2 than in KOH–Ti3C2.

Fig. 3A shows the cyclic voltammograms (CVs) of all samples tested at 10 mV·s−1 sweep rate in aqueous 1 M H2SO4. Upon cycling, none of the materials presented a change in the c-lattice parameters as measured using XRD. A possible explanation is that the distance between two Ti3C2 layers is large enough that the intercalation of small H+ has no effect on the c-lattice parameter. The best performances were achieved using d-Ti3C2 electrodes, with an outstanding volumetric capacitance value of 520 F·cm−3 and a gravimetric capacitance of 325 F·g−1 at 2 mV·s−1 (Fig. 3B). We believe that the superior performances of d-Ti3C2 electrodes originate from several sources. First, it is a 6 times thinner electrode, leading to better charge transfer. It also has a higher specific surface area and is denser because of its morphology (aligned MXene flakes). Nonetheless, d-Ti3C2 has shown a stronger dependence of performance on the scan rate, which is assumed to be caused by the flakes aligning parallel to the current collector and increasing the transport path for ions as the film thickness increases.

The Ti3C2Tx, KOH–Ti3C2 and KOAc–Ti3C2 electrodes have the same SSA, therefore the difference in electrochemical performance can only be related to the difference in surface chemistry. The moderate capacitances for Ti3C2Tx are consistent with the absence of redox activity of the F-termination. The KOAc–Ti3C2 and KOH–Ti3C2 electrodes exhibit similar behavior, with the latter having a higher gravimetric capacitance thanks to a lower content of F-groups (Fig. 2B). Their surfaces are terminated by oxygen-containing groups, including –OOH, =O and –OH, which are known to be responsible for pseudocapacitive behavior of carbon in acidic electrolytes. This hypothesis is consistent with the shape of the CVs presented in Fig. 3B, where the presence of a set of broad peaks at −0.2 and −0.1 V/Ref is observed. These peaks may originate from surface redox reactions of MXene leading to changes in the degree of oxidation of titanium in MXene, which is a transition metal capable of changing the oxidation degree between +3 and +4.

Fig. 3C shows the capacitance vs. cycle number dependencies obtained from galvanostatic charge–discharge curves shown in Fig. 3D. Stable capacitances of 415 F·cm−3 and 215 F·cm−3 were obtained at 5 A·g−1 for d-Ti3C2 and KOH–Ti3C2, respectively. After 10 000 cycles, no significant degradation was observed.

4. Conclusions

The effects of intercalation and delamination of the two-dimensional titanium carbide, Ti3C2Tx (MXene) on its surface chemistry and electrochemical capacitance have been demonstrated. XPS analysis confirmed that terminal fluorine was successfully replaced with oxygen-containing functional groups after the chemical intercalation of potassium salts. This change in surface chemistry led to a 4-fold increase in the capacitance in sulfuric acid, demonstrating a pseudocapacitive contribution to the electrochemical behavior of MXene. Delamination of Ti3C2Tx layers led to both an increase of the specific surface area of MXene films and the modification of the surface chemistry of d-Ti3C2Tx. These changes gave rise to an electrochemical capacitance of 520 F·cm−3 at 2 mV·s−1, the highest volumetric capacitance reported for this material. Since Ti3C2 is a representative of a large family of two-dimensional transition metal carbides/nitrides, there is high probability that other MXenes can achieve even higher capacitance values, if their composition and surface chemistry are properly controlled.

Conflict of interest

There is no conflict of interest.

Acknowledgment

We thank Dr. Michel Barsoum for useful discussions, Chang E. Ren for help with Ti3C2Tx and d-Ti3C2 preparation and the Centralized Research Facility of Drexel University for providing access to SEM, XRD and XPS equipment. This work was supported by the Partnership Universities Fund (PUF) of French Embassy (PUF2012, “New two-dimensional ceramics for better batteries”). YDA was supported by the European Research Council (ERC, Advanced Grant, ERC-2011-AdG, Project 291543 – IONACES). PS acknowledges the funding from the Chair of Excellence of the Airbus group foundation “Embedded multifunctional materials”.

References

